WAEC-MATHEMATICS-ANSWERS
Keep Subscribing With Us To
Enjoy Our Service And Get Your Legit.
Solution Before Exam Time.
==================================
MATHS-OBJ
1CBCDACDCCD
11AADBDACBBC
21BDDABDADAD
31CDACCCCCDA
41BBBCDCACDB
Completed.
Solutionfans.Com love u.
==================
MATHS-THEORY
(1a)
Given A={2,4,6,8,…}
B={3,6,9,12,…}
C={1,2,3,6}
U= {1,2,3,4,5,6,7,8,9,10}
A’ = {1,3,5,7,9}
B’ = {1,2,4,5,7,8,10}
C’ = {4,5,7,8,9,10}
A’nB’nC’ = {5, 7}
(1b)
Cost of each premiere ticket = $18.50
At bulk purchase, cost of each = $80.00/50 = $16.00
Amount saved = $18.50 – $16.00
=$2.50
===================================
(2ai)
P = (rk/Q – ms)⅔
P^3/2 = rk/Q – ms
rk/Q = P^3/2 + ms
Q= rk/P^3/2 + ms
(2aii)
When P =3, m=15, s=0.2, k=4 and r=10
Q = rk/p^3/2 + ms = 10(4)/(3)^3/2 + (15)(0.2)
= 40/8.196 = 4.88(1dp)
(2b)
x + 2y/5 = x – 2y
Divide both sides by y
X/y + 2/5 = x/y – 2
Cross multiply
5(x/y) – 10 = x/y + 2
5(x/y) – x/y = 2 + 10
4x/y = 12
X/y = 3
X : y = 3 : 1
=======================================
(3a)
Diagram
CBD = CDB (base angles an scales D)
BCD+CBD+CDB=180° (Sum of < in a D)
2CDB+BCD=180°
2CDB+108°=180°
2CDB=180°-108°=72°
CDB=72/2=36°
BDE=90°(Angle in semi circle)
CDE=CDB+BDE
=36°+90
=126
(3b)
(Cosx)² – Sinx given
(Sinx)² + Cosx
Using Pythagoras theory thrid side of triangle
y²= 1²+√3
y²= 1+ 3=4
y=√4=2
(Cosx)² – sinx/(sinx)² + cosx
(1/2)² – √3/2/
(√3/2)² + 1/2 = 1/4 – √3/2 = 1-2√3/4
3/4+1/2 = 3+2/4
=1-2√3/4 * 4/5
=1-2√3/5
===================================
(4a)
Total Surface Area = 224πcm²
r:l = 2:5
r/l = 2/5
Cross multiply
2l/2 = 5r/2
L = 5r / 2
Total surface = πrl + πr²
= πr (l + r)
24π/π = πr (5r/2 + r )/ π
224 = 5r²/2 + r²/1
L.c.m = 2
448 = 5r² + 2r²
448 / 7= 7r²/7
r² = 64
r = √64 = 8cm
L = 5*8/2 = 20cm
(4b)
Volume = 1/2πr²h
= 1/3 * 22/7 * 8 * 8 * 18.33
= 1228.98cm³
L² = h² + r ²
20² = h² + 8²
400 – 64 = h²
h² = 336
h = √ 336
h = 18.33cm
===================================
(5a)
Total income = 32+m+25+40+28+45
=170+m
PR(²)=m/170+m = 0.15/1
M=0.15(170+m)
M=25.5+0.15m
0.85m/0.85=25.5/0.85
M=30
(5b)
Total outcome = 170 + 30 = 200
(5c)
PR(even numbers) = 30+40+50/200
=115/200 = 23/40
===================================
(7a)
Diagram
Using Pythagoras theorem, l²=48² + 14²
l²=2304 + 196
l²=2500
l=√2500
l=50m
Area of Cone(Curved) =πrl
Area of hemisphere=2πr²
Total area of structure =πrl + 2πr²
=πr(l + 2r)
=22/7 * 14 [50 + 2(14)]
=22/7 * 14 * 78
=3432cm²
~3430cm² (3 S.F)
(7b)
let the percentage of Musa be x
Let the percentage of sesay be y
x + y=100 ——————-1
(x – 5)=2(y – 5)
x – 5=2y – 10
x – 2y=-5 ——————-2
Equ (1) minus equ (2)
y – (-2y)=100 – (-5)
3y=105
y=105/3
y=35
Sesay’s present age is 35years
===================================
(8a)
Let Ms Maureen’s Income = Nx
1/4x = shopping mall
1/3x = at an open market
Hence shopping mall and open market = 1/4x + 1/3x
= 3x + 4x/12 = 7/12x
Hence the remaining amount
= X-7/12x = 12x-7x/12 =5x/12
Then 2/5(5x/12) = mechanic workshop
= 2x/12 = x/6
Amount left = N225,000
Total expenses
= 7/12x + X/6 + 225000
= Nx
7x+2x+2,700,000/12 =Nx
9x + 2,700,000 = 12x
2,700,000 = 12x – 9x
2,700,000/3 = 3x/3
X = N900,000
(ii) Amount spent on open market = 1/3X
= 1/3 × 900,000
= N300,000
(8b)
T3 = a + 2d = 4m – 2n
T9 = a + 8d = 2m – 8n
-6d = 4m – 2m – 2n + 8n
-6d = 2m + 6n
-6d/-6 = 2m+6n/-6
d = -m/3 – n
d = -1/3m – n
===================================
(9a)
Draw the triangle
(9b)
(i)Using cosine formulae
q² = x² + y² – 2xycosQ
q² = 9² + 5² – 2×9×5cos90°
q² = 81 + 25 – 90 × 0
q² = 106
q = square root 106
q = 10.30 = 10km/h
Distance = 10 × 2 = 20km
(ii)
Using sine formula
y/sin Y = q/sin Q
5/sin Y = 10.30/sin 90°
Sin Y = 5 × sin90°/10.30
Sin Y = 5 × 1/10.30
Sin Y = 0.4854
Y = sin‐¹(0.4854), Y = 29.04
Bearing of cyclist X from y
= 90° + 19.96°
= 109.96° = 110°
(9c)
Speed = 20/4, average speed = 5km/h
=======================================
(11a)
Diagram below.
(11b)
Given 8y+4x=24
8y=-4x + 24
y=4/8x + 24/8
y=-1/2x +3
Gradient = -1/2
Using m = y-y/x-x¹ and given (x¹=-8) (y¹=12)
-1/2=y-12/x+8
2(y-12)=-x-8
2y-24=-x-8
2y+x=24-8
2y+x=16
===================================
(12a)
BCD=ABC=40°(alternate D)
DDE=2*BCD(<at centre = twice < at circle)
DDE = 2*40 = 80°
OD3=OED(base < of I sealed D ODE)
ODE + OED + DOE= 180°(sum of < is in D)
2ODE+DOE=180°
2ODE+80°=180
2ODE+180=180
2ODE+100°
ODE+100/2=50°
(12bi)
Digram
(12bii)
Area of parallelogram = absin
=5*7*sin125°
=35*sin55°
=35*0.8192
=28.67
=28.7cm²(1dp)
(12c)
Given x=1/2(1-√2)
2x²-2x=2[1/2(1-√2]²-2(1/2(1-√2)}
=2[1-2√2+2/4]-(1-√2)
=(3-2√2/2)-(1-√2)
=3-2√2-2+2√2/2=1/2
===================================
Completed.
Below Are Maths Answers Solved On Paper For Better Understanding
Some Of The Mathematics Questions
Mathematics Symbols
Start Subscribing for your next paper now and make sure you have submitted your phone number in our website for those of you writing Neco/GCE & 2021 jamb utme
Thanks
Waec answer